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Abstract

A color visual difference model (CVDM) was developed to
predict the image quality difference of two images. The
model is an extension of the two previously published
models: The monochromatic Visible Difference Predictor
(VDP) by Scott Daly and the color Spatial-CIELAB (S-
CIELAB) model by Zhang et al.

The CVDM consists of color space conversion
modulation by contrast sensitivity functions, visual masking
effect, multiresolution detection mechanisms, and visible
color difference calculation. Inputs to the model are a
reference image and a processed image, as well 
calibration parameters such as viewing distance, resolution
of the images, and white point. The output of the model is
CIELAB ∆E map, on which the bright colors represent large
∆E values, and the dark colors represent small visible ∆E
values. The model was applied to detect the visibility of
blur, noise, grating, and compression artifacts. The results
show a better agreement with visual impression than does
the S-CIELAB model.

Introduction

A document reproduction process usually consists o
multiple steps: the image input terminal (e.g., a scanner), the
image processing system, and the image output terminal
(e.g., a printer). In many steps of digital processing, it i
possible that the output image is not exactly the same as t
input one for bandwidth and storage reasons (i.e., image
compression). The goal of this type of image processing, in
terms of image quality, is to produce an image that look
exactly like the original image.

Two kinds of differences may be used to evaluate
image quality. The first is the physical difference, i.e. the
difference in features of the images that can be measured
physically. For example, the feature may be the spectral
power distribution or the temporal intensity variation at any
image location. The feature may also be the spatial Fourier
component of the image. The measurement of the physical
difference is constrained by the precision of the physical
device used.

Another is the visual difference. It is well known that
human vision has limitations.  The color appearance of a
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light stimulus can be determined by only three independent
variables, while its physical counterpart, the spectral power
distribution, can be measured in many dimensions (e.g., 401
dimensions in 380 - 780 nm, with 1 nm interval). The fine
details that human eyes can discern (also called visual
acuity) are lower than 60 cpd (or about 1 sec of visual
angle). In the temporal domain the human eye cannot
differentiate any variation beyond the flicker fusion
frequency of about 50 Hz.

Because human vision has limitations, the physical
difference is different from the visual difference. In many
cases, the highly precise physical measurement will conta
details that the human eyes cannot perceive. If our goal is to
make the two images look alike, any precision that goes
beyond the limitation of the human eyes will be
unnecessary. This is the basis for all the lossy compressio
where the unnecessary components of the image are
discarded to save image size. But how much physical
degradation is acceptable to yield visually lossless imag
A visual difference model is needed to answer the question.

The visual difference model can be used to predict the
visible difference of two images. It usually consists of
several steps with each step imitating one step of the human
visual system signal processing. The model takes two
images as its inputs. One is a reference image, which is the
original, undistorted image. Another is a test image, which
is usually a distorted image obtained after the reference
image goes through some image processing procedures,
such as compression/decompression, halftoning, etc. Other
input parameters may include the viewing distance and the
spatial resolution of the image in dots per inch (dpi) for
spatial calibration, and the white point for color appearance
calculation. The output of the model is a visual difference
map of the two images.

Several visual difference models have been developed
and applied in image quality evaluation. Among those
models, the Visible Difference Predictor (VDP) model has
gained wide attention due to its comprehensiveness and it
successful application.1 As far as color image is concerned,
the only published visual difference model is the Spatial-
CIELAB (S-CIELAB) model developed at Stanford
University.2 Because our color visual difference model
(CVDM) incorporates different components from the two
existing visual difference models mentioned above, the two
models are reviewed in the following section.
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Review of the Two Existing
Visual Difference Models

Visible Difference Predictor (VDP)
The VDP model is developed for black and whi

images and is composed of three steps. The first ste
called the amplitude nonlinearity, which focuses on t
signal processing at the retinal level. The response of 
photoreceptors to the incoming light is a nonlinear proce
When the light intensity is low, the photoreceptors may n
respond to the light until some specific light level 
achieved. This light level is called the absolute thresho
On the other hand, when the light level is extremely hig
the response of the photoreceptors may reach a limit and
longer increase with the increase in light level. This is call
saturation. The thresholding and saturation of t
photoreceptors on the retina are characterized in 
amplitude nonlinearity step.

The second step of the VDP model is the spat
filtering using a 2-D contrast sensitivity function, which is 
postreceptoral process. A contrast sensitivity functi
specifies the ability of the human visual system to det
intensity modulation as a function of spatial frequenc
Previous studies have shown that the sensitivity of 
human visual system varies with spatial frequency. At bo
the low (below 1 cpd) and high spatial frequencies (beyo
8 cpd) the response of the visual system declines. T
response of the visual system reaches its peak at 
intermediate frequency range (2-4 cpd). The 2-D contr
sensitivity function simulates this bandpass nature of t
human visual system.

The detection mechanism is included as the third step
the VDP model. This step takes place at the cortical lev
where the response of the neurons is specific to spa
frequency, orientation, and spatial location. The basic g
of the VDP model is to detect any visible distortion of th
test image compared to the reference image. According
the findings of the psychophysical studies, detection sho
be considered as a multi-channel mechanism instead o
single-channel mechanism. The input image is separa
into multiple-channel representations (also called subba
images) with varying spatial frequencies and orientations
visual difference is calculated for each subband image. T
all the visual differences are summed up to form a visib
difference map between the test image and the refere
image. A probability of detection can be derived from th
visible difference.

Spatial-CIELAB Model (S-CIELAB)
The S-CIELAB model is based on numerou

psychological studies at Stanford University.3,4,5,6 Their
research proved that by first approximation color a
pattern are separable. Based on the data of asymmetric c
matching and the assumption of color-pattern separability
set of spectral response curves for three signal-proces
channels is specified. The spatial tuning curves (also ca
contrast sensitivity functions) for the three channels are a
specified. Because the three spectral curves are simila
the opponent-color channels found in other studies, the th
channels are labeled the luminance channel (O1), 
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red/green channel (O2), and the blue/yellow channel (O
In the S-CIELAB model, the color conversion does n
depend on the image spatial pattern, and the spatial tun
does not depend on the image color. This is the so ca
color-pattern separability.

The S-CIELAB model is a spatial extension to th
CIELAB calculation and can be used for measuring col
reproduction errors of digital images. The inputs to th
model are a reference image and a test image, as wel
sample per degree (spatial resolution), white point (viewi
condition), and image color space (for color conversion
Each of the two images is first separated into thr
opponent-color images (O1, O2, & O3 images). All thre
images go through a spatial-filtering process by convolvi
with kernels of different sizes and shapes. The filter
images are converted back to the standard CIE color spa
The CIELAB formulas are used at the final step to calcula
the appearance difference of the two images. For unifo
color patches, the result of S-CIELAB is the same as that
the CIELAB. For complex color patterns, the S-CEILAB
model predicts the visual difference more accurately th
the CIELAB calculation. This model has been used f
evaluating various processing methods.7,8

Two important signal processing steps are missing 
the S-CIELAB model. The first step is the visual maskin
effect, which refers to a situation in which the threshold f
detecting a stimulus is elevated when a masker is pres
An example of visual masking is image quality evaluatio
When we try to determine whether an image has be
distorted or not, we are actually detecting the distortion 
the presence of the image contents. If the image is very b
and contains many fine details, the detection of t
distortion is harder than when a uniform background 
present. In this case the masker is the image itself and
stimulus is the distortion to be detected. The masking eff
is both spatial-frequency selective and orientation selecti
When the masker deviates in spatial frequency 
orientation from the test stimulus, the masking effe
becomes weaker and disappears beyond a certain range.

The second missing step is the multiresolution repr
sentation.9 It has been revealed by the previous studies th
the cortical representation of the input image is a group
images in separate subbands. Each subband image con
a component of the original image that falls in a speci
spatial frequency and orientation range. In a detection ta
each subband does its own detection independently. T
results from all the subbands are summed up to form 
overall detection result.

The two steps mentioned above are actually close
related because the visual masking effect is believed
occur only within each subband. The effect of the visu
masking is to elevate the threshold of detection in ea
subband and hence decrease the overall probability 
detection. The visual masking effect and the multiresoluti
representation are significant factors of the human visi
detection and hence should be included in a visu
difference model.

An additional part of the S-CIELAB model that need
improvement is the contrast sensitivity function. Previou
studies have shown that the luminance contrast sensitiv
5
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function should have a bandpass shape while the S-CIELAB
uses a lowpass luminance contrast sensitivity function. 
bandpass CSF would ignore the mean light level and focus
only on spatial modulation. This is actually what happens in
the human visual system.10

In summary, the VDP model is a comprehensive model
in the sense that it simulates visual mechanisms starting at
the retinal level and going all the way up to the primary
visual cortex. However, the model does not include the
color signal processing mechanisms and hence is limited
applications in the monochromatic domain. On the other
hand, the S-CIELAB model offers a color space for the
representation of chromatic signals in human visual system,
as well as a method of output (∆E) for easy comparison with
results of current color appearance models. The goal of the
present study is to develop a comprehensive color visual
difference model to predict the image quality of digital color
images. The model is an extension of the VDP model and
the S-CIELAB model in the sense that it wil l adopt useful
steps from both the VDP model and the S-CIELAB model.

Description of the Color Difference Model

The CVDM consists of four steps: color space conversion,
contrast sensitivity functions, visual masking effect, an
multiresolution detection mechanisms.

Color space Conversion
The first step of the CVDM is to choose a proper color

space to represent the color image for subsequent
processing. It is natural to use an opponent-color space
because many studies have shown that the postreceptoral
chromatic signals are expressed in some kind of opponent-
color space. The opponent-color space used in the S-
CIELAB model was chosen as the color space in the
CVDM. It has been shown that this color space is similar to
the other previously developed opponent-color spaces.3

Contrast Sensitivity Functions
The contrast sensitivity functions (CSFs) used in the CVD
are different from the CSFs used in the S-CIELAB mode
The O1 channel, the luminance channel, used the CSF of the
VDP model.1 The curve has a peak spatial frequency of 3
cpd. On both sides of the peak the curve declines and
reaches zero at both zero cpd and the cut-off frequency
(about 30 cpd). The CSFs for the O2 and O3 channels were
derived from a classical study by Mullen.11 The two CSFs
have a lowpass shape. Both have a constant value
(normalized to unity) in the low spatial frequency range and
decline passing a transition point. The O2 (red/green) CSF
has a transition point of 0.8 cpd and a cut-off frequency of
11.5 cpd. The O3 (blue/yellow) CSF has the same transition
point, but a lower cut-off frequency (11 cpd). The declining
of the two curves follows a straight line on a semi-
logarithmic scale. Figure 1 shows the three contrast
sensitivity functions used in the O1, O2 and O3 channels.
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Figure1: The contrast sensitivity functions used in the CVDM.

Frequency Hierarchy in the Three Color Channels
A decomposition of the original images is made before

the visual masking effect is considered. This is because the
visual masking effect only occurs when the stimulus
(distortion to be detected) and the masker (the image itself)
are within the same cortical subband, which is specific in
spatial frequency, orientation, and color. The numbers of
subbands are different for different opponent-color
channels. This is because the information contained in the
three channels contributes differently to the visual system.
Luminance information is considered more important than
chromatic information and hence uses the most number of
subbands (= 21). The information in the yellow/blue
channel (= 9) has the least contribution to the total and
hence is processed using less subbands than that is usein
the red/green channel (= 13). The overall consideration
when choosing subbands is a trade-off between including
enough details and computational efficiency.

The Flowchart of the CVDM
The flowchart of the CVDM is shown in Figure 2. Both

the reference image (image1) and the test image (image2) are
converted to three opponent-color images, O1, O2 and O3
using a 3 by 3 color conversion matrix. The three images are
then transformed into the Fourier space. Three contrast
sensitivity functions are used to modulate the three spect
forming a net set of spectra. Each image is then separated
into a number of subband images, with each subband having
its own optimal spatial-frequency and orientation ranges. In
each of the subbands, the visual masking factor (MFi) is
determined based on the image content in that band. Then the
subband reference and test images are transformed back to
the intensity domain (still in the opponent-color space) for
calculation of the CSF weighted difference (∆i) between the
two images. This CSF weighted difference is divided by the
masking factor to form the visual difference in that subband
(∆i/MFi). After all subband images are processed, the overall
visual difference between the two images is calculated fro
6
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the subband visual differences by probability
summation. This overall visual difference is added to the
filtered reference image (image 1’) to form a new test image
(image2’). The two images are then converted back to a
standard color space and the CIELAB formulas are used to
calculate the color appearance difference. The key
improvement of the CVDM over the S-CIELAB model is th
incorporation of masking in the visual difference calculation.
This reflects our belief that masking is an important factor in
the visual detection of image distortion.

Figure 2: The flowchart of the CVDM.

Test of the Color Difference Model

The main purpose of the test is to examine the masking
effect of the CVDM and the compatibility of the CVDM
and the S-CIELAB models. The reference image is a chapel
image (256 by 256, Figure 3(A)). This image contains both
low spatial frequency information (in the sky area) and high
spatial frequency information (in the grill area of the
chapel). The viewing distance and the spatial resolution of
the image are set to be 18 inches and 75 dpi. The Nyquist
frequency of the image is thus 11.8 cpd. Four kinds of test
images are used to test the CVDM: blurred image, white
noise image, grating noise image, and compre
sion/decompression image. Due to the limited space of the
paper, only the test using grating image (Figure 3(B)) is

CSF Modulation

Color Space Conversion I

image 2 = image 1
+ physical ∆

Cortical Transform

image 1'

Visible ∆ Summation ( ∆i/MFi)

Calculation of Masking Factor (MFi)

image 2' = image 1'
+ visible ∆

Color Space Conversion II

CIELAB ∆E Calculation

Visible Color Difference Map

image 1image 1
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shown here. Figure 3(C) shows the prediction of the
CVDM. The prediction of the S-CIELAB model is included
as a comparison (Figure 3(D)). In the output ∆E maps, a
bright area represents a high ∆E value, while a dark part
represents a low ∆E value. The scales of the two ∆E maps
are the same, allowing direct comparison of the predictions
of the two models.
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Figure 3: Simulation test of the CVDM with a grating image. (A:
top left) Reference image; (B: top right) Grating test image; (C:
bottom left) Prediction of the CVDM; (D: bottom right) Prediction
of the S-CIELAB model.

The grating test image is formed by adding a sine-wave
grating to each of the R, G, & B images of the reference
image. A visual examination of the test image shows t
the grating pattern in the sky area is more obvious than the
grating pattern in the grill area. This is expected because th
vertical high-spatial-frequency image content in the grill
area masks the grating pattern, and hence reducing the
strength of the grating. The prediction of the CVDM is
shown in Figure 3(C), which shows a reduced grating
modulation in the grill area while a strong grating
modulation in the sky area. Figure 3(D) gives the prediction
of the S-CIELAB model. It shows the same grating
amplitude in both the grill area and the sky area. It is
obvious that the prediction of the CVDM is more accurate
than that of the S-CIELAB model.

In general, the predictions of the CVDM are more
consistent with the visual impression than that of the S-
CIELAB model over the four test images. The two model
produce very similar results when there is no image con
to mask the noise, such as in the sky area. When the image
is complicated and contains high-spatial-frequency masking
content, such as the grill area, the prediction of the CVDM
is more accurate than that of the S-CIELAB model.

Conclusion

The CVDM is developed based on the two previously
published visual difference models: the Visible Difference
Predictor (VDP) model and the Spatial-CIELAB model (S-
CIELAB). The CVDM extents the VDP model in that it can
be used to evaluate the visual difference of color images.
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The output of the CVDM is compatible with CIE standar
CIELAB ∆E, which makes it easy to compare the pred
tions of the CVDM to that of other color appearanc
models. The CVDM is superior to the S-CIELAB model i
that it incorporates the masking effect and the multires
lution detection mechanisms. Incorporating the two add
ional factors makes the CVDM work well with comple
color images.
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